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Abstract. The effect of a transverse field on the magnetizations and phase diagrams of a decorated
two-sublattice Ising model ferrimagnetic consisting of two magnetic atoms A and B with spins
σA = 1/2 andSB = 1 is investigated within the framework of the effective field theory. A number
of characteristic phenomena, such as the possibility of compensation points and two transitions,
are found.

1. Introduction

Ferrimagnetism has been extensively investigated in the past both experimentally and
theoretically, since important magnetic materials for technological applications, such as garnets
and ferrites, are ferrimagnetic. Ferrimagnets have several sublattices with a finite resultant
moment and show paramagnetic behaviour above the transition temperatureTc. In contrast
with a ferromagnet, there is an interesting possibility of the existence, under certain conditions,
of a compensation temperatureTk (Tk < Tc), at which the resultant magnetization vanishes
[1, 2]. In recent works, the effect of disordered interfaces with alloying type Ap Bp−1 on the
transition temperature and magnetization has been investigated for a bilayer system consisting
of two magnetic layers A and B where A and B can possess different bulk properties [3–6]. The
effects of a crystal fieldD and the magnitude of the spinS on the phase diagram (Tc andTk)
have been examined and it was clarified that more than one compensation point can exist in the
disordered ferrimagnetic alloy as well as the diluted mixed spin-1/2 and spin-1 ferrimagnetic
Ising systems [7–11].

Decorated Ising spin models were originally introduced in the literature by Syozi [12]
as exactly solvable models in statistical physics. They show several kinds of ferrimagnetic
behaviour in the temperature dependence of the resultant magnetization according to the
assumed values of parameters. The arrangement of atoms in these models is like that in
the normal spinel. However, most of the decorated models studied have been restricted to
the effects of a crystal field on the phase diagram [13–16]. On the other hand, there has
been considerable interest in the study of quantum fluctuations in classical spin models. The
simplest of such systems is the Ising model in a transverse field. The spin-1/2 transverse
Ising model, originally introduced by De Gennes [17] as a valuable model for tunnelling of
the proton in hydrogen-bonded ferroelectrics [18] such as those of KH2PO4 type, has been
extensively studied by the use of various techniques [19–23] including the effective theory field
treatment [24, 25] based on a generalized but approximated Callen–Suzuki relation derived by
Sà Barretoet al.
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The purpose of this work is to study via effective field theory [26, 27] the effect of a
transverse field on the magnetic properties (the critical temperatureTc, the compensation
temperatureTk and the magnetization curves) of a decorated two sublattice ferrimagnetic Ising
system consisting of two magnetic atoms A and B with spinsσA = 1/2 andSB = 1. As far
as we know, such a study has not been carried out. In particular the results obtained here may
clarify the fact that the applied transverse field can control the compensation points. Therefore,
the outline of this work is as follows. The formulation of the problem is given in section 2
on the basis of the effective field theory. The results are discussed in section 3 and a brief
conclusion is given in section 4.

2. Formulation

We consider a decorated ferrimagnetic Ising system. The whole lattice is divided into two
sublattices L1 and L2. Every point of L1 is always occupied by an A atom with the fixed spin
σA (σA = 1/2). That of L2, which is composed of one decorating point on every bond of L1, is
always occupied by a B atom with a fixed spinSB (SB = 1). The exchange interaction between
A and B atoms is assumed to be antiferromagnetic. Furthermore, we assume that there exists
a ferromagnetic exchange interaction between every nearest-neighbour pair of A atoms. For
clarification, the two-dimensional decorated system is depicted in figure 1. The Hamiltonian
of the system has the form

H = J
∑
(ij)

σ zi S
z
j − J

∑
(ij)

σ zi σ
z
j −�1

∑
i

σ xi −�2

∑
i

Sxi (1)

whereσ z1 (Sz1) andσx1 (Sx1 ) denote thez andx components of a quantum spinEσ z1 ( ESz1) of
magnitudeσ = 1/2 (S = 1) at sitei (m) and�1 (�2) is the transverse field acting onσ zi (Szi ).
J andJ ′ (J > 0 andJ ′ < 0) are the exchange interactions. The first two summations are
carried out only over nearest-neighbour pairs of spins.

Figure 1. The two-dimensional decorated spin system consisting of magnetic atoms A and B with
spin valuesσA = 1/2 andσB = 1, where the A atoms (white points) form a square lattice.

Using a single-site cluster approximation in which attention is focused on a cluster
comprising just a single selected spin labelled 0, and the neighbouring spins with which it
directly interacts, the Hamiltonian can split into two parts,H = H0 +H ′ whereH0 includes
all the parts ofH associated with the site 0.
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Following S̀a Barretoet al [24, 25], we can use the approximate relation derived for the
transverse Ising model,

〈Sp0α〉 =
〈
tr0[Sp0α exp(−βH0)]

tr0[exp(−βH0)]

〉
(2)

that neglects the fact thatH0 andH ′ do not commute. In the limit� → 0, the Hamiltonian
contains onlySz and (2) becomes exact. The single angular brackets denote the thermal average
for a fixed spatial configuration of the spins.

For a decorated system the quantities of interest are the longitudinal magnetizationsmSz
andmσz , the transverse magnetizationsmSx andmσz and the quadrupolar momentsqSz andqSx
which are defined by

mSα = 〈〈S0α〉〉c (3)

mσα = 〈〈S0α〉〉c (4)

qSα = 〈〈S2
0α〉〉c (5)

whereα = z, x and〈. . .〉c indicates the usual canonical ensemble thermal average for a given
configuration.

The evaluation of the trace in (2) yields the following equations:

mσZ =
1

2

〈( N∑
j=1

(−JSzj ) +
M∑
j=1

(J ′σ zj )
)([ N∑

j=1

(−JSzj ) +
M∑
j=1

(J ′σ zj )
]2

+�2
1

)−1/2

× tanh

[
1

2
β

√√√√[ N∑
j=1

(−JSzj ) +
M∑
j=1

(J ′σ zj )
]2

+�2
1

]〉
(6)

mσX =
1

2

〈
�1

([ N∑
j=1

(−JSzj ) +
M∑
j=1

(J ′σ zj )
]2

+�2
1

)−1/2

× tanh

[
1

2
β

√√√√[ N∑
j=1

(−JSzj ) +
M∑
j=1

(J ′σ zj )
]2

+�2
1

]〉
(7)

mSZ =
〈(
−

N ′∑
j=1

Jσ zj

)(( N ′∑
j=1

Jσ zj

)2

+�2
2

)−1/2

2 sinh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]

×
(

2 cosh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]
+ 1

)−1〉
(8)

qSZ =
〈(

2

( N ′∑
j=1

Jσ zj

)2

+�2
2

)(( N ′∑
j=1

Jσ zj

)2

+�2
2

)−1/2

2 cosh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]

×
(

2 cosh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]
+ 1

)−1〉
(9)

mSX =
〈
�2

(( N ′∑
j=1

Jσ zj

)2

+�2
2

)−1/2

2 sinh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]

×
(

2 cosh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]
+ 1

)−1〉
(10)
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qSX =
〈(( N ′∑

j=1

Jσ zj

)2

+ 2�2
2

)(( N ′∑
j=1

Jσ zj

)2

+�2
2

)−1/2

2 cosh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]

×
(

2 cosh

[
β

√√√√( N ′∑
j=1

Jσ zj

)2

+�2
2

]
+ 1

)−1〉
(11)

whereN andM (N ′) are the numbers of nearest neighbours of central sitei (m); we are going
to work on a bidimensional system (N = M = 4 andN ′ = 2). mσα (mSα) with α = z or
x are the longitudinal and transverse magnetizations corresponding toσ = 1/2 (S = 1); qSα
(α = z, x) are the longitudinal and transverse quadrupolar moments corresponding toS = 1.
β = 1/kBT (we takekB = 1 for simplicity), 〈. . .〉 indicates the usual canonical ensemble
thermal average for a given configuration and the sums run over all nearest neighbours.

To perform thermal averaging on the right-hand side of equations (6)–(11), we follow the
general approach described in [15] and [16]. First of all, in the spirit of effective field theory,
multi-spin correlation functions are approximated by products of single-spin averages. We
then take advantage of the integral representation of the Dirac delta distribution, in order to
write equations (6), (7), (8), (9) and (10), (11) in the form

mσα =
∫

dw f σα (w,�1)
1

2π

∫
dλ eiwλ

N∏
m=1

〈eiλJSzm〉
M∏
j=1

〈eiλJ ′σ zj 〉 (12)

mSα =
∫

dw f Sα (w,�2)
1

2π

∫
dλ eiwλ

N ′∏
j=1

〈eiλJσ zj 〉 (13)

qSα =
∫

dw gSα(w,�2)
1

2π

∫
dλ eiwλ

N ′∏
j=1

〈eiλJσ zj 〉 (14)

where

f σz (y1, �1) = 1

2

y1√
y2

1 +�2
1

tanh[12β
√
y2

1 +�2
1] (15)

f Sz (y2, �2) = y2√
y2

2 +�2
2

2 sinh[β
√
y2

2 +�2
2]

2 cosh[β
√
y2

2 +�2
2] + 1

(16)

gSz (y2, �2) = 1

y2
2 +�2

2

1(2y2
2 +�2

2) cosh[β
√
y2

2 +�2
2] + �2

2

2 cosh[β
√
y2

2 +�2
2] + 1

(17)

with

f σx (y1, �1) = f σz (�1, y1) f Sx (y2, �2) = f Sz (�2, y2) gSx (y2, �2) = gSz (�2, y2).

We now introduce the probability distribution of the spin variables (for details see Saber
[26] and Tuckeret al [27]).

P(σ z) = 1
2[(1 + 2mσz )δ(σ

z − 1
2) + (1− 2mσz )δ(σ

z + 1
2)] (18)

P(Sz) = 1
2(q

S
z +mSz )δ(S

z − 1) + (1− qSz )δ(Sz) + 1
2(q

S
z −mSz )δ(Sz + 1). (19)



Decorated ferrimagnetic Ising model 5607

Using these expressions and equations (12)–(14), we obtain the following set of equations:

mσz =
1

2M+N

M∑
µ=0

N∑
ν=0

N−ν∑
γ=0

µ∑
i1=0

M−µ∑
i2=0

ν∑
j1=0

γ∑
j2=0

N−(ν+γ )∑
j3=0

CMµ C
N
ν C

N−ν
γ C

µ

i1
C
M−µ
i2

Cνj1
C
γ

j2
C
N−(ν+γ )
j3

×2ν+i1+i2(−1)ν+i1+i2(mσz )
i1+i2(qSz )

j1+j2+j3(mSz )
N−(ν+j2+j3)

×f σz
(
J ′

2
(M − 2µ)− J (N − (ν + 2γ ),�1)

)
(20)

mSz =
1

2N ′
N ′∑
µ=0

µ∑
k1=0

N ′−µ∑
k2=0

CN
′

µ C
µ

k1
C
N ′−µ
k2

(−1)k12k1+k2(mσz )
k1+k2f Sz

(−J
2
(N ′ − 2µ),�2

)
(21)

qSz =
1

2N ′
N ′∑
µ=0

µ∑
k1=0

N ′−µ∑
k2=0

CN
′

µ C
µ

k1
C
N ′−µ
k2

(−1)k12k1+k2(mσz )
k1+k2gSz

(−J
2
(N ′ − 2µ),�2

)
. (22)

We have thus obtained a set of self-consistent equations (20)–(22) for the moments that
can be solved directly by numerical iterations. The total longitudinal magnetizationMz of the
system is given by

Mz

NA
= mσz + 2mSz (23)

whereNA is the total number of A atoms. The sublattice longitudinal magnetizationmSz can
be evaluated as

mSz = −2mσz f
S
z (J,�2). (24)

Thus, the total longitudinal magnetizationMz can be expressed as

Mz = M0
z [1− 4f Sz (J,�2)] (25)

where

M0
z = NAmσz .

Below the transition temperatureTc,M0
z takes a finite value. Accordingly, if the compensation

point at which the total magnetization reduces to zero may exist in the system, the compensation
temperatureTk can be determined exactly from the conditionMz = 0 for Tk < Tc, namely

1= 4f Sz (J,�2) for Tk < Tc. (26)

In the vicinity of the transition temperatureTc, equation (18) can be expressed as

q = q0 + q1σ
2 (27)

where

qi = 1

2N ′
N ′∑
µ=0

µ∑
k1=0

N ′−µ∑
k2=0

CN
′

µ C
µ

k1
C
N ′−µ
k2

(−1)k12k1+k2gSz

[−J
2
(N ′ − 2µ),�2

]
δ[k1 + k2, i].

In order to determine the transition temperatureTc, let us expand the right-hand sides of
equations (20) and (21); using equation (22), we obtain the following equation forσ andm:

σ = a10σ + a01m + a21σ
2m + a12σm

2 + a30σ
3 + a03m

3 + · · · (28)

m = b10σ (29)
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where the coefficientsaij are given by

aij = 1

2M+N

M∑
µ=0

N∑
ν=0

N−ν∑
γ=0

µ∑
i1=0

M−µ∑
i2=0

ν∑
j1=0

γ∑
j2=0

N−(ν+γ )∑
j3=0

j1+j2+j3∑
i3

CMµ C
N
ν

×CN−νγ C
µ

i1
C
M−µ
i2

Cνj1
C
γ

j2
C
N−(ν+γ )
j3

C
j1+j2+j3
i3

2ν+i1+i2(−1)ν+i1+i2q
j1+j2+j3−i3
0 q

i3
2

×f σz
[(
J ′

2
(M − 2µ)− J (N − (ν + 2γ )

)
, �1

]
δ[i1 + i2 + 2i3, i]

×δ[(N − (ν + j2 + j3)), j ]

and

b10 = 1

2N ′
N ′∑
µ=0

µ∑
k1=0

N ′−µ∑
k2=0

CN
′

µ C
µ

k1
C
N ′−µ
k2

(−1)k12k1+k2f Sz

[−J
2
(N ′ − 2µ),�2

]
δ[k1 + k2, 1].

If we substitute equation (25) into equation (24), we obtain an equation forσ of the form

σ = aσ + bσ 3 + · · · (30)

with

a = a10 + a01b10 and b = a12b
2
10 + a21b10 + a12b

2
10 + a30 + a03b

3
10.

The second-order phase transition line is then determined by the condition

a = 1 and b < 0. (31)

The sublattice magnetizationσ is given by

σ 2 = 1− a
b

. (32)

For the transition to be of the second order, the right-hand side of equation (32) must be
positive. If this is not the case, the transition is of first order, and hence the point at which
a = 1 andb = 0 is the tricritical point. To find the first-order transition line in the (TC/J ,�/J )
plane we proceed as follows: apply an external magnetic fieldh/J and derive the equations
analogous to (20)–(22) to obtain the magnetizationmσz as a function ofT/J , α (α = J ′/J ),
�/J (�1 = �2 = �) andh/J . If the transition is of first order the isotherms in the (mσz ,
h/J ) plane, for fixed values ofT/J ,�/J andα have the typical S-shape of the Van der Waals
isotherms and, as usual, the first-order transition point is determined by the Maxwell rule. We
extrapolate toh/J = 0 to obtain the first-order transition temperature when no external field
is applied as a function of�/J andα.

3. Results and discussion

We are now able to study the magnetic properties (compensation and transition temperature
and magnetization curves) of the two-dimensional decorated ferrimagnetic Ising model in a
transverse field. For simplicity, we assume that the transverse field acting on the system is
homogeneous, i.e.�1 = �2 = �.

For the system under consideration, the calculations show that the right-hand side of
equation (32) is always positive. Hence, all the transitions are of second order.

First, let us examine the variation of the transition temperature versus the magnitude of
the transverse field�/J for several values of the ratioα of the exchange interactionsJ ′ and
J (α = J ′/J ). The results are shown in figure 2. The dotted line denotes the compensation
temperatureTk/J which is obtained from equation (22), while the solid lines denote the critical
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0.00 2.00 4.00 6.00

0.00

1.00

2.00

3.00

2.5Tc /J

Ω  /J

1.5

0.5

3.0

Tk /J

Figure 2. The phase diagram in the (T/J , �/J ) plane of the decorated ferrimagnetic system
depicted in figure 1. The solid and dashed lines represent the critical temperatureTc and the
compensation temperatureTk respectively. The number labelling each line denotes the parameterα.

0.00 1.00 2.00 3.00 4.00 5.00

0.00

2.00

4.00

6.00

8.00

α

Ωc /J

C

α

Ωk /J

Figure 3. The variation of the critical transverse field�c/J with α (solid line); the dashed line
represents the compensation transverse field�k/J . αc is the value ofα above which the system
exhibits a compensation point.
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0.00 0.50 1.00 1.50 2.00 2.50

0.00

0.10

0.20

0.30

0.40

Mz / N

T/ J

A
A

B

Figure 4. The temperature dependence of the total magnetizationsMz is plotted for the two-
dimensional decorated ferrimagnetic system, when two special sets of pair values (�/J , α) are
selected: the curve labelled A is obtained for (2.5,3.0); the curve labelled B is the result for (2.0,
1.5).

0.00 2.00 4.00 6.00

0.00

0.40

0.80

1.20

1.60

Mz / N

Ω  / J

A

B

A

Figure 5. The variation of the total magnetizationMz with � for T = 0, for selected values ofα.
The curve A corresponds toα = 3.5 and the curve B corresponds toα = 1.5.
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temperatureTc/J (which is obtained from equations (27)).We can see thatTk/J is independent
of α. It is shown that bothTk/J and Tc/J decrease from their maximum values which
correspond to�/J = 0 to vanish at some critical value of the transverse field. Depending on
the values ofα and�, Tk/J is smaller or larger thanTc/J , that is the compensation point does
not exist for any values ofα and�. We have found that forα > 2.88 there is a compensation
point for any� smaller than�c (see curveα = 3.0), for 2.30 < α < 2.88 we have a
compensation point only in a limited range of�: for example,α = 2.5, the system exhibit
a compensation point for 3.873< � < 4.142, and forα < 2.30 there is no compensation
phenomena.

In figure 3 we have plotted the variation, withα, of the critical transverse field
�c/J (compensation transverse field�k/J ) at which the critical temperature (compensation
temperature) reduces to zero. It is seen that�c/J varies linearly withα, while�k/J remains
constant and is equal to 3.873. A compensation point exist only if�c/J > �k/J , that is when
α is greater than a critical value which is equal to 2.30.

Let us now examine the variations of the total magnetizationMz of the system. Figure 4
shows the variations ofMz with the temperature for selected values of� andα. It is seen that
theMz curve corresponding toα = 3.0 and� = 1.0 exhibits a compensation point belowTc,
while theMz curve corresponding toα = 1.5 and� = 2.0 does not show any compensation
point. The variations ofMz with � whenT = 0 are shown in figure 5. Depending onα,Mz

can have two different behaviours. Forα > αc,Mz shows a compensation point (curve A) and
for α < αc there is no compensation point (curve B). All of these results are consistent with
the predictions derived from figures 1 and 2.

4. Conclusion

In this work we have investigated the magnetic properties of a two-sublattice decorated Ising
ferrimagnetic system composed of two magnetic atoms A and B withSA = 1/2 andSB = 1
in a transverse field. We have shown that the compensation temperatureTk has the same
behaviour as the critical temperatureTc; that isTk decreases when we increase the transverse
field� and vanishes at a critical value of�which is the compensation transverse field�k. The
compensation temperature and transverse field (Tk, �k) are independent of the ratioα. The
system studied here may be simple, but fruitful, from both the theoretical and material science
points of view. We hope that our study will stimulate further the theoretical investigations
and/or experimental measurements
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